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Another Solution to the Polyhedron in Dürer’s Melencolia: 
A Visual Demonstration of the Delian Problem 

ISHIZU Hideko 
Seijo University, Tokyo 

Introduction 

    The engraving Melencolia (1514) (Fig. 1) by Albrecht Dürer (1471-1528) has been inter-

preted in various ways, but is not yet completely solved. It is filled with marvelous instru-
ments, and among them a large stone polyhedron in the left center has attracted both art 
historians and scientists, and the efforts to clarify the significance of the polyhedron have been 
made by both sides. 

    The preliminary sketch of the polyhedron (Fig. 2), which Dürer drew in perspective, 
indicating the center of vision by an eye, shows all edges of the polyhedron transparently. 
And each vertex bears a mark. 

    This polyhedron (Fig. 3) has been regarded as a truncated rhombohedron, which consists 
of 6 rhombuses. Cut off two corners along the planes perpendicular to the line AH, the solid 
now consists of 6 irregular pentagons and 2 equilateral triangles.  One side of the upper trian-
gular face and one side of the bottom triangular face are perpendicular to the picture plane. 
    The engraving is also drawn in perspective. Lines that are perpendicular to the picture 

plane, such as the side cornice of the building and the arm of the balance, converge at the 
vanishing point on the horizon of the sea. Dürer set the mirror image of the polyhedron of the 
sketch in such a manner that the vanishing points and horizons of both planes correspond 

with each other, so that the polyhedron may be regarded as correct in perspective on the 
engraving. 

    The polyhedron is so large-sized that it must have some significance, which has been 
often argued over, and is still in controversy.  Art historians were apt to regard intuitively the 
stone polyhedron as some symbol in the context of their interpretation, for example, as a 
symbol of geometry, perspective, material, and so on. Meanwhile, scientists attempted to 
clarify the structure of the polyhedron by determining the acute angle of the rhombus before 

truncation, that is, the most acute angle of the pentagon. Since Dürer is prominent both as an 
artist and a geometer, it is necessary to examine this issue from both sides. 

Examination of Preceding Treatises 

    Preceding treatises dealing with the structure of this polyhedron are listed in Table 1.  

While some insist that the polyhedron is a truncated cube without any rational grounds [1], 
the rest are divided into two groups, the one that determined the acute angle to be about 72° 
and the other about 80° [2]. 
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Fig. 2: Albrecht Dürer, Drawing, 1514, Pen and 
brown and black ink, 20.2×19.3 cm, Dresden 
Landesbibliothek 

 
 

Fig. 1: Albrecht Dürer, Melencolia, 1514, 
Engraving, 23.9×18.6 cm 

 
 
 

Fig. 3: Model of the Polyhedron
(drafted by Ishizu) 

 
Table 1 

year name angle method reason / interpretation 
c.1900 Niemann 80° by use of graphics intended to be a cube 
1922 Nagel (90°)   enlarged a cube obliquely 
1955 Grodzinski 72° making models visually most alike among 60°, 72°, 90° 
1957 Richter 79°36’ based on perspective  

1970 Rösch 72° 
admitted Grodzinski’s 
idea 

as it’s connected with the golden section 

1972 Harnest 80° reconstruction  
1976 Wangart 90° by use of graphics  
1978 Deckwitz 76° making models as it’s connected with pyramids 
1979 Enomoto 72° making models as it’s connected with the golden section 
1980 Schröder (81°47’) analysis the ratio between two diagonals is 2: √3 
1981 MacGillavry 79° ±1° based on perspective crystal of calcite → mineralogy 
1982 Lynch 80~83° making models three-dimensional anamorphosis 

1990 Sixel about 80° 
admitted Richter’s no-
tion 

 

1993 Engelhardt 80° calculation crystal of calcite 
1999 Schreiber 72°  as it’s connected with the golden section 
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    Those who insist on an angle 72° founded their theory on the relation of this angle to 

equilateral pentagons, and moreover, to the golden section, as a result of looking for a mean-
ingful rhombohedron [3].  In 1955, Grodzinski stated that the acute angle of the rhombus was 
72° based on making models.  He made three models of the truncated rhombohedron with 

rhombuses having acute angles 60°, 72°, and 90°,― the angles which seemed somehow sig-
nificant.  Among them, one with an angle 72° seemed to him to be most appropriate visually. 
In 1970 approved Rösch this angle, because of its connection with the golden section. In 
addition, he insisted that several parts of Melencolia were constructed based on the golden 
section. In 1999, Schreiber stated that Dürer had drawn this polyhedron based on a ground 
plan and an elevation, and had determined the angle to be 72° as it is connected with the 
golden section. As stated above, an angle 72° is a very convincing angle which attracts many 
scientists. 

    On the other hand, the original polyhedron can be reconstructed as it is drawn in per-
spective. Derived from reconstruction by use of graphics and calculation, the acute angle of 
the rhombus, the face of the rhombohedron before truncation, is identified as about 80°.  The 
quadrilateral AEHD in Fig. 3 is parallel to the picture plane, that is, it is similar to the original 
figure. The sides AD and EH of this parallelogram are projections of the sides of the original 

rhombus. The sides AE and DH are projections of the longer diagonals of the rhombus. Thus, 
for example, we can construct the original rhombus, and obtain the acute angle about 80°. At 
the request of Gielow, Niemann arrived at an angle 80°, although he was sure that Dürer had 
intended to draw a truncated cube. Then, Richter (1957), Harnest (1972), MacGillavry (c. 1980), 
Schröder (c. 1980), and Engelhardt (1993) also identified the acute angle as about 80°.  Schröder 
tried to find some significance relating to the ratio between the two diagonals of the rhombus 

which he set at 2 : √3. In this case, the acute angle can be calcu-lated to be about 82°.  Lynch 
derived an angle 80° by use of both reconstruction and making a model.  But 80° cannot cause 
any important geometric meaning. Lynch insisted that this polyhedron represented a three-

dimensional anamorphosis, which appears to be a rhombohedron set on a pentagonal face, 
and appears to be a cube set on a triangular face. MacGillavry and Engelhardt stated that it 

represented a crystal of calcite, which does not seem persuasive enough, as there is no reason 
why calcite should appear so large in the engraving. Schröder and Harnest identified the acute 

angle to be 80°, while they did not mention further interpretation on it. 
    As stated above, the preceding attempts to determine somehow logically the acute angle 
of the rhombus, the face of the rhombohedron before truncation, to be 72° or about 80° seem 
both unsatisfactory.  An angle 72° is attractive, while it does not correspond with the result of 
the analysis, having a large margin of error. And the case is possible only when Dürer lacked 
the ability to draft.  On the other hand, an angle 80°, which was derived from the analysis, on 
the assumption that he was skilled in drafting, seems to be meaningless.  In addition, it should 
be noted that their arguments are restricted only to geometric area, and that they do not refer 
to the vague image on the largest pentagonal face of the solid in the engraving which is too 
noticeable to be ignored. 
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New Hypothesis 
 

    Now I set up a new hypothesis, which corresponds with the result of the geometric 
analysis, is meaningful enough, explains about the patches like a vague figure on the pentago-
nal face, and explains also why and how Dürer drew the solid in the engraving in such a way. 
I’m going to argue below: 1) the solid had been primarily a truncated cube, which Dürer had 
drawn in perspective, 2) and then he enlarged the drawing vertically in a certain ratio; 3) the 
enlargement ratio is an approximate solution to the duplication of the cube, or the so-called 
Delian problem, which originated in ancient Greece. 4) He was interested in this problem and 
gave the full treatment of it in his book Underweysung der Messung.  5) It was such an important 
knowledge of geometry that he visualized in his work. 
 

1) Significance of the Vague Figure on the Polyhedron 

    As mentioned above, there are some shadowy patches on the large pentagonal face of the 
polyhedron in the engraving. That the vague figure represents a skull or a phantom has been 

often reported [4].  As this shadowy image has been engraved on a hard copper plate, it cannot 
be a product of chance, like a stain caused by a drop or a rub on a watercolor. It must be 
meant to represent something especially. In both Dürer’s Knight, Death and Devil (1513) and  
St. Jerome in His Study (1514), which along with Melencolia are collectively referred to as Dürer’s 
three master prints, a skull is engraved. So it seems natural to consider that a skull exists in 
Melencolia, too. However, this skull is not represented in a normal way but as an anamorphic 
figure. We can recognize a skull when we view the engraving obliquely from the lower side. I 
drew a skull I found on an obliquely taken photograph of the polyhedron so that you exactly 
see what I mean (Fig. 4).  So large that it completely occupies the pentagonal face. The skull I 

recognize has similar features to that of his Coat-of-Arms with a Skull (1503) (Fig.5), such as ear 
holes so dark as eye sockets, a waving hollow over the eyebrows, and two vertical lines carved 

Fig. 5: Albrecht Dürer, Detail of Coat-of-
Arms with a Skull (1503, Engraving, 
22.0×15.9 cm)  

Fig. 4: Polyhedron viewed obliquely, with a 
sketch on it by Ishizu 
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Fig. 6: Albrecht Dürer, Transformation of 
a Head Inscribed in a Cube, Illustration 
from Vier Bücher von Menschlicher 
Proportion, 1528, Woodcut 

Fig. 7: Albrecht Dürer, Geometric Method 
of Transformation, Illustration from Vier 
Bücher von Menschlicher Proportion, 
1528, Woodcut 

on a cheekbone. As a way of viewing cannot be supported by logical argument, I must leave 
the judgment to the viewers. But even if my conviction is false, the question about the figure 
remains without a fitter answer. So it seems appropriate to regard the patches as a skull. 

    And when we see the engraving from the left lower side, just as we regard the patches as 
a skull, the polyhedron appears to be a truncated cube (see Figs. 4 and 14).  That the patches 
appear to be a skull, and the polyhedron appears to be a cube at the same time, seems natural, 
as Dürer often associated a human head with a cube. In around 1514 Dürer used to draw a 
human head enclosed in a rectangle or a square as preliminary sketches for his work Vier 

Bücher von Menschlicher Proportion (Nuremberg, 1528).  The book was an attempt to measure 
the proportion of human bodies numerically and to construct them with geometric figures. He 

tried to determine a face by measuring the proportion of each part― eyes, nose, and mouth― 
lengthwise and crosswise, which results in caging a head in a grid. Furthermore, he drafted a 
human head inscribed in a cube. Fig. 6 shows the transformation of a cube with an inscribed 
head into a rectangular parallelepiped with the constant volume. Fig. 7 shows its geometric 
method. The earliest manuscript of this transformation is dated c.1513 [5].  This proves that a 

cube with an inscribed human head was one of Dürer’s basic concepts then, and so was a cube 
with an inscribed skull. 
    Therefore it can be inferred that the polyhedron and the vague pattern on its face are     

a cube and an inscribed skull, represented in an anamorphic manner, the latter being an 
indicator to guide us to a cube. In addition I quote a description of this polyhedron from an 
essay on the engraving Melencolia that is contained in Elementa rhetoricae (1541) by Joachim 

Camerarius (1500-1574), a contemporary of Dürer. He called the polyhedron “quadratum 
saxum”, i.e. “a square block of stone” in it [6].  We may infer from these words that he might 
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Fig. 9: Albrecht Dürer, A Man Drawing a Lute, 
Illustration from Underweysung der Messung, 
1525, Woodcut 

Fig. 8: Albrecht Dürer, Letters on a Building, 
Illustration from Underweysung der Messung, 
1525, Woodcut 

have been informed by Dürer that it had been primarily a square block, a cube. His descrip-

der Messung (Nuremberg, 1525), Dürer indicates a method to 

) Vertical Enlargement 

ion he used when he engraved Melencolia cannot be a method to draw 

t mention some matters caused by 

tion is reassuring support for my hypothesis.  In general, woodcuts around 1525 by Erhard 
Schön, Dürer’s pupil, and a painting titled The Ambassadors (1533) by Holbein the Younger are 
regarded as the earliest examples of anamorphosis.  And Dürer is regarded to have produced 

no anamorphic work. Nevertheless, since he was so skilled in perspective, we cannot deny the 
possibility that he could have used anamorphosis partly in his work prior to them, as it is the 
reverse method of perspective. 

    In his book Underweysung 
write letters on a tower so that they would appear to be of the same size when viewed from 
the ground (Fig. 8).  This shows that perspective and anamorphic drawing are reverse practices 
of the same principle.  In the same book he writes a long explanation of perspective and shows 

an apparatus that helps to draw in perspective correctly (Fig. 9), the sketch of which dates back 
to 1514 [7].  So, we can conclude that he must have mastered not only perspective but also 
anamorphosis, when he engraved Melencolia using perspective in 1514. The abovementioned 
inference is fully reasonable. 
 

2

    But the transformat

a geometrically correct anamorphosis, as the polyhedron seems correct in perspective, without 
any distortion through the method [8].  The only possible method in this case is to enlarge the 

drawn figure vertically in a certain ratio. In this way the solid will turn to a longer shape, but 
it remains nevertheless “correct in perspective”, because, as mentioned later, intersection 
points of lines don’t become off horizontally― x-coordinates remain constant in xy-plane, in 
mathematical terms. And the original figure appears when viewed obliquely. This method 
was also used sometimes to draw anamorphic figures. 

    In order to explain the transformation in detail, I mus
the rules of perspective. Fig. 10 (a) is a model showing the principle of linear perspective. The 
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Fig.10: Model of perspective, (a) Fig. 2.8 of 

Field, J.V., The Invention of Infinity, Oxford, 
New York, Tokyo, 1997, p. 30, (b) Vertically 
enlarged figure of (a) to 125% size, (c) 
Vertically reduced figure of (a) to 80% size, 
(b and c transformed by Ishizu) 

 
Fig.11: (a) Model of perspective with a cube, 

(b) Vertically enlarged figure of (a) to 125% 
size, (c) Vertically reduced figure of (a) to 
80% size (all by Ishizu) 

 

horizontal gauge is fixed at even intervals, and C is the center of vision, that is, the vanishing 
point of lines that are perpendicular to the picture plane. D is the distance point, that is, the 
vanishing point of lines that are parallel to the ground plane and cross the picture plane at a 

45° angle. (b) is a vertically enlarged figure of (a) (to 125% size of (a)), (c) a vertically reduced 
figure of (a) (to 80% size of (a)).  We see that intersections of vertical or oblique lines and 

transversals won’t slide horizontally, that is, the x-coordinates of the intersections remain 
constant, even if the figure is vertically enlarged or reduced in a certain ratio. So, Fig. 10 (b) 
can be identified as a perspective model with the same horizontal gauge, the same distance as 
(a), because the length between the center of vision and the distance point remains constant, 
but with a higher eye-level than (a), 1.25 times higher than (a).  In the same way Fig. 10 (c) can 
be regarded as the case viewed from a lower view point, while the distance and the horizontal 
gauge are the same as (a).  In Fig.11 (a), adding an obliquely set cube at a 45° angle, we can see 
similarly as above, that the horizontal gauge remains constant, and that a square on a 
horizontal plane continues to be a square, the upper face and the base of the cube in this case, 
when the whole figure is vertically enlarged or reduced, because the vanishing points of the 
extensions of the sides on the horizon line remain constant.  But the height of the cube changes 

and the cube turns to a rectangular parallelepiped. In Fig. 11 (b), vertically enlarged to 125% 
of (a), the height of the cube is also increased to 125% of (a), just like the height of the eye-level. 
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Fig.12: Polyhedron with extensions 

based on Dürer’s Drawing 
 (drafted by Ishizu) 

Fig.14: Truncated cube (by Ishizu) 

The same is realized when reduced. In conclu-
sion we can point out some characters about 
figures drawn in perspective: plane figures 
drawn on a horizontal plane continue to be 

regarded as the same figures, when the whole 
picture plane is regularly enlarged (or reduced) 

in the vertical direction, but the height of the eye-level and the height of a drawn solid turn 
longer (or shorter) depending on the ratio of enlargement (or reduction). 
    Let us now apply this transformation to our polyhedron. Fig. 12 sh

 
 
 
 
 
 
 
 
 
Fig.13: Model of the center part of Fig. 12 

and a vertically shortened figure of it to 
79％ (by Ishizu) 

ows the polyhedron 
with extensions of its edges and diagonals based on the preliminary sketch [9].  Every group of 
parallel lines converges at each vanishing point.  Lines that are perpendicular to the picture 
plane converge at the center of vision. Lines that meet the picture plane at a 30° angle con-

verge at their vanishing point on the horizon line, right and left far off.  Fig. 13 (a) is the mirror 
image of the central part of Fig. 12. Reduced vertically to 79% size it turns to Fig. 13 (b).  In this 

figure, the upper face and the base are both recognized as equilateral triangles, as the 
extensions of the sides converge at three vanishing points on the horizon line just as those in 
Fig. 13 (a).  And the polyhedron will be recognized to be correctly drawn in perspective with 
the same distance point and horizontal gauge as Fig. 13 (a).  This figure actually appears to be a 

truncated cube (see Fig. 14).  And if we enlarge it vertically, it turns to a truncated rhombo-
hedron as Fig. 13 (a).  In conclusion, we can presume two cases how Dürer may have drawn 
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the polyhedron, both of which are equally possible.  One is 
simply to draw a truncated rhombohedron correctly in per-

spective, which has been accepted as an obvious premise.  
The other is to draw a truncated cube first, and then to en-
large it vertically, as argued here. We just cannot determine 
in which way he actually did [10].  From neither the en-
graving nor the sketch we can trace it. 
    Of course Dürer could practice such a transformation 
skillfully then. Fig. 15 is a preliminary sketch for an illus-

l Enlargement 

   As argued above, a hypothesis that “the solid is an anamorphic figure of a truncated cube”, 
l-like patches on the large pentagon, does not contradict the 

etric problem which 

tration in his book Vier Bücher von Menschlicher Proportion, 
and dated 1514. It shows how to draw a thin tall man and a 
fat short man based on an average body. Dürer divides a 

human body into about 30 components with horizontal lines, 
and then enlarges the body vertically, maintaining the 
vertical proportion of each part, by a method named 
“verkerer”(Verkehrer) [11].  Meanwhile, there is no horizon-
tal deformation, the width of each part remains constant.  Thus he constructed a thin tall man. 
And a fat short man on the other hand by reducing a standard model by the same method. As 

for this polyhedron, he only had to care about 12 vertexes and a vanishing point shown by an 
eye, that is, 13 points in all, the transformation is easier than that of a human body by far.  So it 
is appropriate to infer that Dürer drew thus, by enlarging vertically, a new solid which seems 
different from a truncated cube, and that he drew an anamorphic skull on it, so that its original 
substance would not be missed. And this transformation, to enlarge a figure in one direction, 
horizontally or vertically, keeping the proportion of each part constant, was sometimes used as 
a method of drawing anamorphosis in the sixteenth and seventeenth cen-turies, which 
Baltrušaitis calls “old-fashioned” anamorphosis [12].  In the preliminary sketch of the 
polyhedron, each vertex bears a mark, which leads some to conclude that Dürer had drafted 
the polyhedron based on a plan and an elevation. Meanwhile, others insist that he drew it 
with the help of a convenient apparatus for perspective drawing which was introduced in his 

book Underweysung der Messung, estimating his ability of perspective draft not high enough 
[13].  But it is not our present concern to clarify in which way he drew it, a truncated cube in 
my view, as this is irrelevant to our argument. In any case, the marks can be also regarded as 
the remains of the transformation, which seems highly possible. 
 

3) Ratio of Vertica

Fig.15: Albrecht Dürer,  
Tall and Short Man Compared, 
Constructed, 1514, Drawing, 
Dresden Landesbibliothek 

 
which was drawn from the skul
fact that “the solid was drawn correctly in perspective.”  Hence, it is feasible to set up a 
hypothesis that the polyhedron is a vertically enlarged truncated cube. 
    But why on earth did he transform a cube in such a way? My answer is that the enlarge-

ment ratio indicates the solution to the Delian problem, a famous geom
originated in ancient Greece. We can calculate the enlargement ratio easily. See Fig. 16. If we 
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enlarge a cube in the direction of the line ah to make a rhombohedron whose constituent faces 

are rhombuses with the angles 80° and 100°, the ratio of enlargement is about 1.277. The 
procedure of calculation is as follows. 

    When we enlarge the figure of the cube only vertically in a certain ratio, an equilateral 
triangle △bcd on a horizontal plane turns to △BCD in the transformed rhombohedron, 

    
nd the length of the segment ah is √3. Fix BC of the rhombus with an acute 

    
    rean theorem, and by substituting numbers obtained 

    116.  

7 times the enlarged cube, in the 
the line 

 .2

blem 

and both triangles are regarded as congruent. (i.e. △bcd≡△BCD.)  Similarly, △efg≡△

EFG. So we are to calculate the ratio of the segment AH to the segment ah, provided that 
bc =BC. 

Let the length of each edge of the cube be 1, then the length of the diagonal of each square 
is √2, a
angle 80° to be √2. By the equality tan 50° = AM／BM, and BM=√2／2, it follows that 
AM = √2／2 ×tan50° ≈ 0.8427. 
On the other hand, in △BCD, DM = √2 × √3／2, MN = √6／6.  
In △AMN, by applying Pythago
above, it follows, 

    AN2 = AM2－MN2 ≈ (0.8427)2－(√6／6)2,  AN ≈ 0.7372.  
∴AH = 3AN ≈ 2.2

    So we obtain the ratio of AH to ah as  

    2.2116／√3 ≈ 1.277.  

    So we may regard t
direction of ah.  

hat the rhombohedron as 1.27

    This number 1 77 per se seems 
apparently to have no significant meaning. 
But it suggests a very important pro
famous in mathematical history which 
originated in ancient Greece. I regard this 
number as an approximate solution to the 

Delian problem, namely the duplication of 
the cube, that is, to obtain the edge of a 
cube which has twice the volume of the 
given one. To solve the Delian problem 

algebraically is to obtain x such that x3=2, 
and its approximate value is 1.26. (i.e. 1.263 

≈ 2.)  I represent the solution with a 
number as an expedient for today readers 
to grasp it easily. But in ancient Greece 

and also in Dürer’s time, the problem was 
regarded only as a geometric construction 

problem, which was to be solved by a 
compass and a straightedge. 
    Let us now verify the account in a 

Fig.16: Rhombohedron, cube, rhombus (each face of 
the rhombohedron), triangular pyramid ABCD, 
and equilateral triangle BCD (all drafted by 
Ishizu) 
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reverse way. See Fig. 16. If we enlarge the cube in the direction of

Fig.17: Polyhedron  
Vertically Reduced to 79% (by 
Ishizu) 

metric significance, all without contradiction. Fig.17 is a 
vertically reduced figure of the polyhedron to 79% size 

of the original, which in fact appears to be a truncated 
cube, as the reciprocal of 1.277 is about 0.783, of 1.26 
about 0.794. It’s sufficient to compare it with the cube 
(Fig. 14) in order to confirm the argument stated above 
visually.  
 

4) The Delian Problem 

 the line ah 1.26 times, the 

erence as a tolerance, which does not disturb to hypothesize that the ratio of the 

 a face in the engraving, and the geo-

   As proved above, it is an objective fact that the polyhe  
and that the enlargement ratio ind

number being an approximation of the solution to the Delian problem, keeping triangles △
bcd and △efg in the original space unchanged, the cube turns to a rhombohedron, and in this 
case, the acute angle of each rhombus face is calculated to be about 80°34′ [14].  So we see that 
the abovementioned argument is quite reasonable. If we, or Dürer himself, draw a cube and 
enlarge it in the ratio, which approximates the solution to the Delian problem, a rhombo-
hedron whose faces are about 80°－100° rhombuses appears as a result.  
    Although the numbers we obtained do not match quite accurately, we may regard the 
slight diff
vertically enlarged polyhedron to the cube represents the solution to the Delian problem. I 

may remark a cube itself suggests the Delian problem potentially, because this problem seems 
to be strictly associated with cubes and squares in Dürer’s mind then, as mentioned later.  He 
could have indicated the problem with a cube, and its solution by the ratio of enlargement. 
How can the problem be otherwise visualized? To put two cubes one of which has double the 
volume of the other? Or to enlarge a normally set cube vertically only to show a rectangular 

parallelepiped? Both aren’t good enough. We may admit the superb polyhedron is a unique 
device to demonstrate the Delian problem. 

    Assuming the above, we can put forward an inter-
pretation of the stone polyhedron which explains its 

geometric construction based on measurement, the 
vague patches on

 d
ica o the Delian 
ron is a vertically enlarged figure

tes the solution tof a truncated cube, 
problem. Now we only have to search for Dürer’s motivation for visualizing it.  First, I explain 
about the problem of the duplication of the cube [15].  It is named the Delian problem after a 
Greek legend about the oracle for Delians to construct a cubical alter to Apollo which has 

double the volume of the existing one, in order to get rid of an epidemic sweeping over the 
country, but they could not succeed in it.  The problem is renowned as one of the “three 
problems of geometric construction”, along with the quadrature of the circle and the trisection 
of the angle, which also originated in ancient Greece. They are now called the three Greek 
problems of impossible construction, as they have been already proved to be impossible to 
solve with a compass and a ruler in the nineteenth century, after they have attracted 
mathematicians for far more than 2000 years.  To solve the Delian problem, we only need, 
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when a and b are given, to obtain x and y such that a : x = x : y = y : b, which leads to a3 : x3 = 
a : b, upon the elimination of y. Since Hippocrates of Chios found it in the fifth century BC, the 
Delian problem has been regarded as equivalent to the problem of finding two proportional 

means between two given lines in the abovementioned form. Provided that b=2a, it’ll be the 
duplication of a cube, to obtain x such that x3=2a3.  More than ten ancient Greek mathema-
ticians had solved the problem in different ways, which are known to us as Eutocius (sixth 
century AD) reported them in his commentary on Archimedes’ On the Sphere and Cylinder.  The 
works of Archimedes were newly translated (from Greek into Latin) in the fifteenth century 

and became widely known again through publications in the sixteenth century, and inciden-
tally the Delian problem mentioned in commentaries on them drew mathematicians’ attention, 
too [16].  We may name for instance De expetendis et fugiendis rebus opus (Venice, 1501) trans-
lated by Giorgio Valla as an early example of such publications. In Nuremberg, Johannes 
Werner, a mathematician and an acquaintance of Dürer, introduced eleven solutions to the 
problem in his book In hoc opera haec continentur. . . (Nuremberg, 1522), which is an adaptation 
of Valla’s book. Heinrich Schreiber (Grammateus) also introduced one solution and the 
original legend of the problem in his book Ayn new kunstlich Buech (Nuremberg, 1518).  Such 
publications tell that the problem was popular and significant then. And Dürer also deals with 

this problem in his book on geometry Underweysung der Messung, in the fourth chapter which 
is devoted to solid geometry and perspective.  He employs about ten pages for the problem, 
describing the original episode and three different solutions, while he briefly introduces only 
one construction for each of the other two of the “three problems of geometric construction” in 

the second chapter, which is devoted to plane geometry. 
Thus the Delian problem proves to be a matter of 
utmost concern for him. He writes indeed so proudly as 

follows: “This is a very useful skill for all workmen. 
This method is kept secret and hidden by scholars, but I 
wish to bring it to light and teach it. ...Therefore, let all 
artisans pay heed, because to this day, as far as I know, 
no one has explained it in the German language.”[17] 
This shows his enthusiasm for the problem and also 
contemporary concern for it. (But it was not actually the 

first published explanation in German, as Schreiber’s 
book appeared earlier.  We can see that Dürer wrote the 

draft before 1518.) He adopts the solution of Sporus, or 
of Pappus (Fig. 18), as both are alike, to explain con-
structions and variations, and then shows applications 
and how to put them to practical use based on the 
obtained solution. He restricts his description only to 
intelligible cases of concrete multiples by natural num-

bers such as double, three times, and so on, all the while 
showing illustrations connected with cubes and squares.

But in the other two solutions, one attributed falsely to 

Fig.18: Albrecht Dürer, Illustration of 
a Solution to the Delian Problem, 
Illustration from Underweysung 
der Messung, 1525, Woodcut  
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Plato and the other of Heron, he deals with the problem as that of proportional means in a 
generalized and rather abstract form. They are essentially different from other parts of 

description that are concrete and plain for the laity, and seem to be inserted in the whole plot 
afterwards. Except for these two solutions, we can see that he handled the problem within the 
scope of cubes on the whole, from introduction to the last description of the practical use, 
including 7 illustrations among 9. This allows us to infer that he could have visualized the 

problem with a cube. And we also see that the problem was worthy and striking for him, as 
we can read from the introductory narration and the long pages that he felt obliged to extend 

this knowledge widely, being convinced of its usefulness.  
 

5) Visual Demonstration of the Delian Problem 

    So it can be stated that a cube alludes to the Delian problem potentially, which was a 
problem at the end of solid geometry, that is, at 

derweysung was published in 1525, it is recognized that he had reserved its 

tion 

summit of geometry for Dürer. As he sets the 
the end of one-, two-, and three-dimensional geometry in his book [18], it is reasonable to 
consider that he might have regarded the problem as a superior representation of solid 

geometry, and furthermore, of geometry as a whole. Besides, the problem seems to have been 
up-to-date in his time, as some publications prove, which was remarkable and appealing 
enough to be visualized in the elaborate engraving for him, and also for those the engraving 
was aimed at. 
    Perhaps Dürer had abovementioned concept already when he engraved Melencolia in 1514. 

Though his Un
manuscripts beforehand [19].  As for the Delian problem, besides some pre-publication drafts, 
some early manuscripts remain: the figures of the first solution and its application to obtain 

cubes that are a half, four and eight times the size of the given one (1513/15), and some 
description of the second solution with a figure (1513) [20].  As he must have drafted the main 

part of the problem before the second and the third solutions were added, he probably had 
mastered the problem by 1513. It follows that we can confirm that he regarded it highly 

already then, which is revealed in his book. In Melencolia, many subjects of mathematics such 
as a compass, a ruler, and a magic square on the wall are depicted. They allow us to associate 
the engraving with mathematics.  Among them, the particularly large polyhedron has a 
significant meaning, the important knowledge of geometry, as logically inferred above. Dürer 
addressed the knowledge “all workmen” as he wrote in his book [21].  Beside the polyhedron 
lies a hammer, and a melting pot on a fire together with pincers are set behind. They remind 
us of carving and casting, where the knowledge is most useful.  In fact he chose the case of 
casting cannonballs as a practical application of the Delian problem in his book. It seems as if 
he emphasized the application of the knowledge to practical field with these instruments. 
    We may presume that Dürer learned the solution to the problem from the library of 
Regiomontanus (1436-1476).  The second and the third solutions are just a direct transla

(from Latin into German) of those contained in De arte mensurandi, written by Johannes de 
Muris in the fourteenth century, as was pointed out by Marshall Clagett [22].  A copy of the 
work belonged to Regiomontanus’ library and was regarded as his own work under the title 
Commensurator until the mid-twentieth century. As for the first solution, Clagett named the 
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following three possible sources at the time Dürer’s Underweisung appeared in 1525. Valla’s 
book mentioned above, a manuscript of another translation of the same work of Archimedes 
with Eutocius’ commentary which Regiomontanus possessed, and Werner’s book mentioned 
above. As Dürer’s earliest manuscript of the first solution dates back to 1513, and Werner’s 
book appeared in 1522, the former two are valid. While it’s not clear from when Valla’s book, 
the source of Werner’s book, was in Nuremberg, the manuscript which Regiomontanus pos-
sessed had been in Nuremberg since he moved to the city in 1471. Regiomontanus estab- 
lished his own print shop there to publish many books on astronomy and mathematics.  He 
notified the publication of the said work of Archimedes in an advertising leaflet printed at his 

own printing office in 1473, and its manuscript is listed in both of the inventories compiled in 
1512 and 1522, which proves that it had been in Nuremberg all along [23].  As the library of 
Regiomontanus was under the control of his student Bernhard Walther, a friend of Dürer’s 
father, Dürer is regarded to have investigated it at will.  There is a strong possibility that he 
learned the solution from the library, as he does not seem to have missed any chance.  
    Regiomontanus, the most prominent astronomer and mathematician in the fifteenth cen-
tury, moved to Nuremberg because it was convenient to communicate with scholars in distant 

rauss, Walter L., The Complete Drawings of Albrecht Dürer, Vol. 3. 1510-1519, New York, 1974,   
p. 1436.  De Haas, Karel, Albrecht Dürer’s Engraving Melencolia §I: A Symbolic Memorial to the 

 [2]  

  

     

 

places there, being the mercantile center of Europe. And because precision instruments for 
astronomical observation were crafted there. Such a background seems to have prepared good 
grounding in accepting an expert knowledge of mathematics for the educated class including 

Dürer, that is, the creator and the appreciators of Melencolia. 
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Nendeln, 1979 (Reprint. First published in London in 1964), p. 400-402. 
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cannot discuss the justification of his argument. (Deckwitz, Franz, Dürer’s MELENCOLIA with 
Compasses and Ruler, Amsterdam, 1978.) 
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